Taking into Account the Shell Finite Element Siae €omputing

the Reinforcement of a Monolithic Floor

Rusakov, A.l.

It is suggested the technique of computing thefeetement of floors of a mo-
nolithic skeleton in vicinity of columns. In thectaique it is applied the results of
computing the reinforcement in linear-elastic modéh slab’s support on the col-
umn in a single node. The reinforcement area imedfmore precisely by taking into
consideration nonlinear properties of armored ostecand given cross-sections of

the columns.

1. Introduction

Let us consider a typical finite element (FE) stuwe of multistorey reinforced
concrete frame including a mat foundation, smoatibéamed) floors and a system
of vertical elements — stiffening diaphragms antiems. In slabs’ modeling to de-
fine stress-strained state (SSS) for the reinfoergmone uses FE of thin linear-
elastic shell with prevailing square 4-nodes elésian columns’ modeling one uses

linear-elastic beam elements. The conjunction dibar or foundation slab with a
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column is secured by a common node of corresporalaments (Fig.1). Under such
modeling of bindings of a slab and a column thejuaction node is the origin of
concentrated force upon the slab from the colunims Theans that in the analytical
model of a slab, under which slab is supposed @ Ibeear-elastic shell with concen-
trated forces applied to points of columns’ suppooh the decrease of a distance to
this points there increases shearing force andibgmidoments up to infinity.

The general technique of estimation of reinforcensectional area for a slab
in the vicinity of columns is that of reinforcem&ntalculation for all the shell FEs,
using slab SSS defined by linear computing, witboding of the element that has
greatest reinforcement area of ones contactindngéocblumn. This greatest area is
considered to be reinforcement intensity of giverealion in the additional rein-
forcement region near the support. In this concaptihe decrease of step of finite-
element mesh (FE mesh), the greatest bending mefigr@ndM, increases up infi-
nitely and, as result, there increases calculamdorcement area.

The scheme described above (of estimation of pesitioment reinforcement)
we shell name as a scheme of reinforcement-on4saipport calculation. When ap-
plying this scheme structural designer assumesgoregment adequacy under suit-
able step of FE mesh. Yet there is no reliablemsuends of choosing shell FE size.
Besides that, the results presented below pointhaitreinforcement calculation er-
ror depends both on the FE mesh and cross-seczierosgiven column. In this pa-
per we propose to complete the scheme of reinfegoémn point support by intro-
duction of coefficients of recalculation of poséivnoment reinforcement obtained by
a common algorithm. Under given conditions of rernément (in particular, given
negative-moment reinforcement area) it is suggetiedetermine the recalculation
coefficientsay, ay, by which we derive the positive-moment reinforeearea at the

site of support:

_ ps
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where p(sy) Is the area of sectional reinforcement on thetpsipport ofx ory direc-

tion. In the paper we present the technique ofléion of coefficients under consid-

eration to specify the relation:

Oyy) = Oy (LBHLAT)) 1)

wherel is the FE mesh’s step as befdgds the column’s cross-section dimension of
x direction in the global coordinate system (“widtbi’ section);H is the column’s
cross-section dimension gfdirection in the global coordinate system (“heigbit
section). About negative-moment reinforcement @rsaassumed that one is equal to
basic (“background”) reinforcement area. The tegheaiis adapted to the computing
suit LIRA 9.2.

2. Technique main regulations

In the technique of coefficients,,, computation there are suggested next

source data: slab width; clear distance from upper and lower longitudirah-
forcement to corresponding face of slab; concraterainforcement classes and cor-
responding stress-strain diagrams of tension angpoession; concrete behavior and

reinforcement behavior coefficients; upper limit mdsitive-moment reinforcement

area on point support for the skeleton of buildiig, ; negative-moment reinforce-

ment area at the site of suppd¥ under assumptiold, = A (the second-order

character points to the reinforcement directiorgrametersl, B,H . Besides, it is
specified the boundaries for bending moments invibmity of slab supports, that
caused by the loads of various types in the skeleta given typical structure. Fur-
ther we set forth the technique for the case dah with a given width, of given
parameters, B, and of square cross-section of a column. Thenettignique is gener-

alized for rectangular section of a column. Thgeasaof coefficientsx, ,, computa-

tion are as follows:

1. Complete the finite-element model (FE modely&hforcement on point
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support that approximately represents possiblescatsupport displacement inside
the slab’s plan. In the simple analytical modefjaase slab supported in its center is

loaded with uniform pressurg (Fig. 2,a). Determine the positive-moment rein-

forcement area—&yIOS as a tabulated function of loapt

~

AR =A(@) (2)

(in the case under consideration owing to symmmufmave;\fs = Z\/ps).

2. Complete the nonlinear-elastic FE model offogcement on plain support
with analytical model of previous stage. In thaédatFE model the dimensions of
plain support are equal to cross-sectional dimessad a given column and FE is of

a small size and of reinforcement determined orfdhmer stage. Model is intended
to determine the extreme loagdfor reinforcement area, = A, = ,&yps, defined for

any q by the table composed on former stage. The madgleiments the stepwise

algorithm of construction loading [1, subsect. 3t6ht fixes the load of destruction
g. After determination of extreme load, it is estiaththe crack separation distance in
marginal state. As a result of stage it is accoshgld the tabulated relation of de-

structive loads:

q=a(A). (3)
3. Match the reinforcement area on the point supijporeach destructive load

g obtained at the stage 2:

A =A>(q). (4)
Calculate search coefficient
a,=a,= :}’s | (5)

Completing the stage, make transition in the refati,.,, = a(q) from the argument

x(y)

gto argumentA\f’s through the function inverse to function (2); pllo¢ graphic chart

of function



a, =a,(A”). (6)
Remark. Tabulated function (2) gives the rouglmesion of destruction load

q=q underA = A = Z\/ps. Without such estimation we can’t construct aroatgm

of seeking the function (3).
4. Check usability of the function (6) for reinferaent calculation in special

cases of slab loading:
A) check the accuracy of coefficients, calculation under the loading of par-

titioning wall and area load together;

B) check the accuracy of coefficierds calculation for station of a column on

a slab verge;

C) check the accuracy of coefficierts calculation for station of a column on
a slab corner.
For each checking A—B we have to compile correspandodel based on nonlin-

ear-elastic reinforced elements.

The technique described is based on the assumptiahat coefficient

a, =ay(A\fS) established by means of developed models for givamgument

Ayps, Is equal to the ratio of required reinforcement aea over reinforcement

area on point support in actual monolithic skeleton(besides, in account of
square cross-section of a column, similar relatiorsp takes place for the rein-

forcement ofx-direction).
3. The example ofi-coefficients calculation and numerical resultshef paper

Let us consider the floor of width= 20 cm of civic building and establish co-
efficientsa for FE of a sizd = 50 cm and for a column of section 50x50 cm. The
specific of construction is: the greatest span.6f6; walling makes the loading 1250
kgs/m; the greatest loading of partitions is of 4@/m. We propose class of con-

creteB25, class of reinforcemem-11l, the distance from upper and lower longitudi-
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nal reinforcement to nearest face of sdaba’ = 3 cm, the crack separation distance
and material behavior coefficients is specifiedatordance with SNIP 2.03.01-84*,

the upper limit of stretched longitudinal reinfoneent on point support for a given
skeleton isAP = 22 cni/m; the area of compressed longitudinal reinforaenie
the support site i\, = 2 cni/m. The analytical model for FE-modeling of thebsla

is the table supported on the column (Figa)2,

b)

al
o

Fig. 2
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The FE mesh of reinforcement on point support @aed on Fig. 2b. Node
A represents the support on the column and hastfirdgs (translational and angu-
lar). NodeB secures invariability of the system and has lraedtdepicted on the
scheme. The mesh steplis 50 cm. That element by which the reinforcememt o
point support has been established is marked wlithgf The results of model analy-

sis are presented in columns 1—2 of Table 1.



The sub-image of FE mesh on plain support is degion Fig. 2¢; mash step
| = 6.25 cm. The region of bearing nodes is selebtedilling. The basic line has

been traced through those elements, which the cggération is estimated by.

Table 1
a | Ar=| k| ka, 9 A | Oy
ton/nf | _ A, ton/nf | ton/n? | cniim
cmf/m

0.5 5.51 1.2 0.6 0.5314 5.87 0.939
0.65 7.27 1.2/ 0.78 0.638p 7.13 1.020
0.8 9.09 1.1} 0.88] 0.7242 8.16 1.114

1 11.63 1 1 0.8445 9.65 1.205
1.2 1431 | 0.9 1.08 0.967f 11.211 1.277
14 17.15 | 0.9 1.26] 1.1550 13.69 1.253
15 1865 | 0.9 135 1.27283 15.3P 1.217
1.6 2020 | 09 144 13954 17.09 1.182
1.75 22.64 1 1.75 1.5846 19.95 1.135

2 27.11 1 2 1.9828 | 26.78 1.012

For nonlinear-elastic model of stage 2 the elemepisforcement are speci-
fied similar in both directions in accordance wiblumn 2 of Table 1. The stress-
strain diagram of concrete is assumed to be tleetpiecewise-linear under sustained
load in correspondence to SP 52-101-2003, i. SoIm@ke any pitch for all pieces of
the diagram, the parameterg, ono Were defined by relationsy,y = 0,99, Opio =
0,99Ry, as it was done, for example, in the paper [2 Slress-strain diagram of
steel is assumed to be the two-piecewise-lineaoirespondence to SP 52-101-2003,
I. 5.2, but with the next differences: horizontarioon has been replaced with the
tilted one defined by ordinates of its erwlg = 0,9&R;, 05, = 1,0R,; working resis-
tanceRy is assumed by SNIP 2.03.01-84* (see the relatiprsly on Fig. 6).

To provide speed and accuracy of evaluations, we hba specify the upper
bound of destruction load limiting the load increas stepwise algorithm. This

boundary load is defined by selection of coeffitieimnd is entered in column 4 for



an each reinforcement area. In column 5 there adddilall real destruction loads, de-
rived by computation.

When processing the models under considerationtégwsse algorithm of
LIRA-system, it is executed one-step Newton-Raphgmtedure [3, subsec. 7.2],
where stiffness matrix, as a matter of fact, isobean matrix for nonlinear system of
resolving equations [4, i. 15.10.1]. Refusal to ypteration process causes the in-
crease of an error of displacement computatiorresponding to increase of current
loading, so that result accuracy essentially depemdthe loading step value. In the
given example the analysis has been done for twoessive “local” loadings: in the

first one the 67% of total loakfy is implemented with 128 steps of similar values th

remained 33% is divided by 384 steps of secondingadrhe decrease of the step
value up to process termination is necessary twiggoan accuracy of computation
both with the speed of algorithm. Coefficidntvas selected such that the process
terminated not before the middle of runtime of camation of second loading. Such
implementation of the algorithm has secured anresmaall enough on computation
of destruction load (see below).

By the results of nonlinear analysis it is evaldatiee crack separation dis-
tance; to do that we analyze the stress stateeoéldment at the middle of section’s
side normal to verified reinforcement direction tiieed element on Fig. 2). The

crack separation analysis is made for internal nmasnel,, M, M, , established in

the element. The system LIRA 9.x allows to do #nalysis automatically — we rec-
ommend to specify internal moments and elementaciarnistics in the design sub-
system LIR-LARM, then start the computing in thedaof determination of rein-
forcement. Both with the crack separation distamogill be determined the rein-
forcement area for given forces, and the affinitycalculated reinforcement area to
initial value from the column 2 of Table 1 may lmnsidered as the confirmation of
computing accuracy. For the example presented afuske affinity is secured.

In the columns 6 and 7 of Table 1 it is given val(#®) and (5) obtained at the
stage 3. These columns specify the searched fun@@jo Its plot is presented on Fig.

3, curve 1.



The error estimation of computation a,

is obtained for loads from column 4 of Tal.3 /-\ 5

ble 1: for each load it was constructed a se2 R
quence of values of destruction load, so thf.tl / \\\/l
each next load has been obtained throug’h / \\
doubling of steps in local loadings. The re-1 /

. . ps
sults of estimation of convergence speed A€ =10 15 20 25 30Ay,

2
presented into Table 2, where for each pair en/m

Fig. 3
of neighbouring members of named se- 9

guence it is given the relative deviation

5., = g ~—Gia
i
Let us estimate the destruction logd(for step ratio 128/384). By reason of
that the last member in every constructed consexuismeglectable, one can assume
the last in raw value of destruction loggl(or gs for ninth line of the table) to be ac-

curate result. So we have a sample of computirayseof loadg,:

5, =38, . (7)
i>4

Table 2
A, kg, | Numberq = g (ton/nf) for specified ratio of steps in local loadingspe % | 5:%
e/ | OV 67 T 327 [ 5, | 641 |85 128/ | 5, | 256/ | &% | 5127 | 5%
m | ™4 | 96 | % | 192 384 | % | 768 1536
5.51| 0.6| 0.52580.5216/-0.8|0.5227 0.2 | 0.5314 1.6|0.5312 -0.04 -0.04
7.27 | 0.780.6513 0.6433-1.2/0.6392 -0.6 | 0.6386/-0.1|0.6376 -0.16 -0.16
9.09| 0.88 0.759|0.7409-2.4/0.7318 -1.2|0.7242/-1.0/0.7231 -0.15 -0.15
11.63] 1 | 0.89 | 0.8591-3.6/0.8488 -1.2|0.8445|-0.5/0.8423 -0.26 -0.26
14.31/1.08/1.0058 0.9872/-1.9/0.9723 -1.5|0.9677|-0.5/0.9658 -0.20 -0.20
17.15/1.26|1.1387 1.1431/ 0.4 | 1.1409 -0.2|1.1550| 1.2 |1.1555 0.04 0.04
18.65/1.35/1.2108 1.2386| 2.2(1.2525 1.1 | 1.2723 1.6 |1.2763 0.03 0.03
20.20(1.44|1.3311/1.3559 1.8|1.3806 1.8 | 1.3954 1.1(1.3967 0.09 0.09
22.64(1.75|1.5094 1.5334 1.6 1.5665 2.1 | 1.5844 1.1(1.6177 2.0 | 1.621/0.20| 2.2
27.111 2 |1.8762 1.89 | 0.7/1.9484 3.0 | 1.9828 1.7|1.9863 0.02 0.02




The error upper bound of destruction load may berdened with the rule of “3
sigma” by sample averageand sample MSB of the sum (7) taken by 10 presented

experiments. We hav@.x = m + 3s = 2.34%. To find out the calculation relative

error of reinforcement are4;®, we note that function (4) is close to linear oamed

its diagram may be plotted by the data from the fivgd columns of Table 1. We eas-

ily obtain through consideration of the relationfioite augmentsﬁAyIDS andAqg, that

in the expression

AN Mg

A

the greatest value of coefficietitis reached at the greatest val§g, = 22 cni/m

and is equal tap = 1.2. Therefore, the relative erdy., = 2.34% of a value’s| cal-

culation causes the greatest error 1234 = 2.8% of evaluatedb\/IOS and, respec-

tively, of coefficienta,,,. This error is sufficiently small to neglect.

Analogous error estimation for destruction logd(with step ratio 64/192)

gives the greatest err@dn., = 5.06%. Corresponding calculation’s error of &uga

O, 1S 6.1%. Coefficientsx that tabulated into Table S.1 at the paper’'s &4pp

X(y) !
ment, have been calculated with step ratio 128/886 remained results of supple-
ment have been obtained with ratio 64/192.

For calculation the crack separation it was chdkerelement at the middle of
an edge of a column cross-section. Note that chgdbie element adjacent to the col-
umn is not important here by dint of smoothing ititernal forces, caused by nonlin-
ear materials properties. On Fig. 4 it is depided-image from the scheme@ with
basic line and diagrams on this one. On the lethéosymmetry axis it is plotted the
bending moment diagram for armored slab underaaed = 0.9677 ton/rh(the fifth
raw of Table 1). It may be seen that moments atbegside of section are of not es-
sential difference. For comparison it is depictedtlee right the similar diagram ob-
tained through linear calculations for non-armoeéegiments. It may be seen that lin-

ear-elastic analysis completes inadequate resulted¢ards to this, the attempt of
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making reinforcement near supports more precisedndensing FE mesh, might
raise error up, for capacity of smoothing the in&trforces is lost, while the FEs of
big size have this one.

Of the fourth stage’s checks we’ll consider maabadr-intensive check B,
which made through analytical model on Fig. 5 (o left) and respective FE mesh
with point support (on the right). The logdsimulates all actual loads on the floor

except the load by walling; the lo&®imakes precise the effect of the lagat the

X

Fig. 5. Analytical model and FE mesh for the chBck
1 —the line of loading; 2 — the node of point supp

spans parallel to slab edge; the lepdimulates pressure of walling. In the element
adjacent to the point support we can find out 8rimél momentsM ;Va“ — bending
moment of the walling impact in the cross-sectibattnormal to the edgeyl ;j****

and M ¢ — bending moments of all remained loadings in Bigetdirections. For

the simulated floors of the skeleton under consitilen it is evaluated the ranges for

every loadq, P, g;, producing this forces in the testing model. Besidf the model-
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on-the-point-support for described analytical mopded construct nonlinear-elastic
model with FE mesh stelp= 6.25 cm. This model is used, having loads amd re
forcement, to obtain the factor of safety of theudlre kg, i. €. the coefficient

which defines marginal state under loa#lg (), KreP, Ksted1). By means of this

model for any given vaIueAyIDS we define the least factéry. of the structure, rein-

forced with allowance for recalculation coefficier{iL), under any loads correspond-
ing to accepted reinforcement on the point suppoe, loads satisfying to the equa-

tion
Afs(q’ qul) = A;)S'

Next, by the diagram of the relatidugye( A\/ps) we make a conclusion about passing a

check. In considered example the guaranteed fatteafety is no less then 1, that is
why recalculation coefficients, defined by the tiela 1 on Fig. 3, satisfies to the
check B. The checks A and C are completed in simiinner.

On Fig. 3 the curve 2 is plotted for negative-mamesinforcement area

Ay =6 cni/m with step ratio 128/284. By comparison of curteand 2 we note

that parameter's\, deviation does not disturb essentially the reta(t).

In the case of rectangular cross-section colxH the technique described

above should be generalized by the next complem&hé searched relations

ay(A\fS) anda,(A) do not coincide now, and, for beginning, we havedtablish
their approximations: the relation, (AJ® i$ wanted of being established as for a

columnBxB; the relationa, (A™ )is wanted as for a coluntixH. After that these
relations have to be corrected by the next schémie considered above model of
stage 2 we introduce rectangular support of thesesectiorBxH and specify rein-

forcement by use of obtained recalculation coedfisa, anda, for different loads

g. Then we plot the relatioky(q) “factor of safety — load” for table-like construc
tion (computing continues until destruction). Fgpital skeleton these coefficients
do not differ significantly from the unit: for iretce, it was obtained the vallkig, >

12



0.96 for a column 0.5x0.75 andh = 20 cm (see supplement). Having established

the relationksi(q) and taking into account the plotted distractia@ttgrn we adjust

relationsa , (A)® ) a,(A”) by multiplying factors the such that provide cdiui

Kate = 1 On the next recalculation (formulas (S.1) are ¢xamples of adjustment).
This computing technology is based on the hyposhtst along each side of upper
cross-section of a column, supporting the slab 388 of the letter is defined just by
the dimension of this side, and is of not valuatdpendence on the section’s dimen-
sion by another direction. Considering the checks@of the stage 4 (see above) we
note that these checks’ technique is applicabt®lomns of rectangular section with
no changes. In the supplement we tabulate restilt®efficientsa calculation for

different cross-sections of column.

4. About exceeding of reinforcement area by analysis

with nonlinear-elastic model

When being calculated reinforcement area by me&nsminear-elastic mod-
el, the virtual distraction could be found out #oreinforcement which provides in-
tegrity of the structure in practice. This occuystie next two reasons.

1. The stepwise calculator of the system LIRAWhen applied to the armored
slabs, detects distraction on the loss of linksupporting nodes that makes a struc-
ture geometrically variable. The loss of link t@ tbupport is detected on the state of
plastic hinge for any element between the supputtthe safe part of a structure. The
state of structure called plastic hinge in systdiRA.may be close to the marginal

but not being this. Thus, for instance, plastiogeirarises if the stress in tensile rein-
forcement becomes greatéBo; , whereo; is the greatest stress on the stress-strain

diagram of reinforcement tension, and therewitleeixbf a region of stretched con-
crete is small enough. That is why it might be disté false destruction on comput-
ing analysis.

2. In accordance with SP 52-101-2003, the limpretesss (greatest safety

stress) on the armature state diagrams is beingecaative because this stress is as-
13



sumed to be the yield stress (designed stressyeasalistraction is defined by ulti-
mate strength. On Fig. 6 it is depicted 3 diagramension of reinforcement A-II:

Ossp(€) — diagram by SP 52-101-2008;.(c) — experimental diagram from the
book [5], the such that the yield stregsand ultimate stress, correspond to GOST

5781-82;05«(€) — piecewise-linear diagram, inclosing hardeniagreent. The lat-

OS)
ton/nt Oeox
6000( —
/L// / Ostest
\
40000H——
o] . .
r = 09557 |la? = 45000
20000 :
| I R, = 37500
) J
0 ) 2 4 6 8 | | 14 enc
€1 =1.4%
Fig. 6

ter diagram has been used in repeated analysisneitfinear-elastic models, that
aiming to obtain lower reinforcement area providstgucture strength, yet violating
the requirements of SP 52-101-2003. This testiagrdim is obtained by extrapola-
tion of diagramoss in such manner, that from poia the ratio Ose(€)/Ostes(€)
would increase from 1.07 (i. e. from reinforcemesgliability coefficient by SNIP
2.03.01-84*) up to 4/3 with ultimate strain 6%. $hiltimate strain is of lesser value
then relative stretchs = 14% by GOST 5781-82 (1994). Owing to the ligpeduli-
arities of testing diagram the results of analysimg the latter are being sufficiently
reliable.

Being calculated SSS by means of nonlinear-elastidel elaborated for the
problem considered in Sect. 3, one confirms integr the structure with unit coef-
ficients ayy). This result accounts for the integrity of reirded monolithic structures
designed with no holding of required FE mesh stemarely, because of possible

analysis errors the real state of reinforcementhinifpange to tensile hardening zone
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(behind the yield point), when the crack separabieimg out of limit but there is no
destruction of structure.

Remark. Diagram of compression of structural steel close agreement with
diagram of tension on strain range up to harderang, for greater strains (by mod-
ule) the compression stress is greater then terstiess [6]; in consequence of this

we assume the diagram of reinforcement state Issingmetrical.

Results.

On analysis of monolithic slab reinforcement byame of FE model with point
supports, we have to take into account the relatemveen obtained results and FE
mesh step.

The amendment of reinforcement area in the vigioit point supports is at-
tained with recalculation coefficients for reinfernent area, which depend on FE
mesh step and may be tabulated.

Analysis by SP 52-101-2003 does not take into aatcadditional strength of
structure, corresponding to working state of reicdonent at the hardening zone of

diagram of state.
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SUPPLEMENT

RELATIONS a, =a (A®), a, =a,(A)
CORRESPONDING TO FE MESH OF CELUI=50 cm

In all tabulated relations below, for the intermedate argument’s value the

function has to be established by linear interpolaon.
The analysis conditions are defined at the firsageaph of sect. 3 except by

the next: A, = 4 cnf/m; the column cross-section dimensions are givaovi

Table S.1 Table S.2
Column sectionBxH = 0.5x0.5 m Column sectionBxH = 0.75x0.75 m
Variable Variables’ values for dimensionality Variable Variables’ values for dimensionality
[AP] = cnf/m [AP] = cnf/m
Ayps 5 6.5 10 12.5 25 Ayps 5 12 16.5 19 25
a 0.9 1 1.23| 1.29/ 1.15 a 0.8 096 | 1.02| 1.01] 0.9¢
y y

Column sectionBxH = 0.5x0.75 m:the relations searched are obtained by meandlaista
S.1 and S.2 after correction as follows:

a 3.5><0.75 — 1020( 8.5XO.5(A)[I)S) o )‘:().5><0.75 — 1051 S.75><0.75(A<p8) ' (Sl)

— Coefficients are calculated for the column logatinside the floor grid.

Table S.3
Column sectionBxH = 0.375x0.375 m
Variable Variables’ values for dimensionality
[AP] = cnf/m

A)F/)S 55| 85 11 14| 17.% 225

a, 1.00| 1.26f 1.3 132 126 1.20
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