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Taking into Account the Shell Finite Element Size for Computing 

the Reinforcement of a Monolithic Floor 

 

Rusakov, A.I. 

 

 It is suggested the technique of computing the reinforcement of floors of a mo-

nolithic skeleton in vicinity of columns. In the technique it is applied the results of 

computing the reinforcement in linear-elastic model with slab’s support on the col-

umn in a single node. The reinforcement area is defined more precisely by taking into 

consideration nonlinear properties of armored concrete and given cross-sections of 

the columns. 

 

1. Introduction 

 

Let us consider a typical finite element (FE) structure of multistorey reinforced 

concrete frame including a mat foundation, smooth (unbeamed) floors and a system 

of vertical elements — stiffening diaphragms and columns.  In slabs’ modeling to de-

fine stress-strained state (SSS) for the reinforcement, one uses FE of thin linear-

elastic shell with prevailing square 4-nodes elements; in columns’ modeling one uses 

linear-elastic beam elements. The conjunction of a floor or foundation slab with a 

Fig. 1 
 

 Column 

  Conjunction  
  nodes 

FE mesh of the 
foundation slab  

 FE mesh of 
 the floor 



2 

column is secured by a common node of corresponding elements (Fig.1). Under such 

modeling of bindings of a slab and a column the conjunction node is the origin of 

concentrated force upon the slab from the column. This means that in the analytical 

model of a slab, under which slab is supposed to be a linear-elastic shell with concen-

trated forces applied to points of columns’ supports, on the decrease of a distance to 

this points there increases shearing force and bending moments up to infinity. 

The general technique of estimation of reinforcement sectional area for a slab 

in the vicinity of columns is that of reinforcement’s calculation for all the shell FEs, 

using slab SSS defined by linear computing, with choosing of the element that has 

greatest reinforcement area of ones contacting to the column. This greatest area is 

considered to be reinforcement intensity of given direction in the additional rein-

forcement region near the support. In this concept, on the decrease of step of finite-

element mesh (FE mesh), the greatest bending moments Mx and My increases up infi-

nitely and, as result, there increases calculated reinforcement area. 

The scheme described above (of estimation of positive-moment reinforcement) 

we shell name as a scheme of reinforcement-on-point-support calculation. When ap-

plying this scheme structural designer assumes reinforcement adequacy under suit-

able step of FE mesh. Yet there is no reliable recommends of choosing shell FE size. 

Besides that, the results presented below point out that reinforcement calculation er-

ror depends both on the FE mesh and cross-section size of given column. In this pa-

per we propose to complete the scheme of reinforcement on point support by intro-

duction of coefficients of recalculation of positive-moment reinforcement obtained by 

a common algorithm. Under given conditions of reinforcement (in particular, given 

negative-moment reinforcement area) it is suggested to determine the recalculation 

coefficients αx, αy, by which we derive the positive-moment reinforcement area at the 

site of support: 

ps
yxyxyx AA )()()( α= , 
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where ps
yxA )(  is the area of sectional reinforcement on the point support of x or y direc-

tion. In the paper we present the technique of tabulation of coefficients under consid-

eration to specify the relation: 

),,,( )()()(
ps

yxyxyx AHBlα=α ,         (1) 

where l is the FE mesh’s step as before; B is the column’s cross-section dimension of 

x direction in the global coordinate system (“width” of section); H is the column’s 

cross-section dimension of y direction in the global coordinate system (“height” of 

section). About negative-moment reinforcement area it is assumed that one is equal to 

basic (“background”) reinforcement area. The technique is adapted to the computing 

suit LIRA 9.2. 

 

2. Technique main regulations 

 

In the technique of coefficients )( yxα  computation there are suggested next 

source data: slab width h; clear distance from upper and lower longitudinal rein-

forcement to corresponding face of slab; concrete and reinforcement classes and cor-

responding stress-strain diagrams of tension and compression; concrete behavior and 

reinforcement behavior coefficients; upper limit of positive-moment reinforcement 

area on point support for the skeleton of building psAmax; negative-moment reinforce-

ment area at the site of support yA′  under assumption xA′  = yA′ (the second-order 

character points to the reinforcement direction); parameters HBl ,, . Besides, it is 

specified the boundaries for bending moments in the vicinity of slab supports, that 

caused by the loads of various types in the skeleton of a given typical structure. Fur-

ther we set forth the technique for the case of a slab with a given width h, of given 

parameters l, B, and of square cross-section of a column. Then the technique is gener-

alized for rectangular section of a column. The stages of coefficients )( yxα  computa-

tion are as follows: 

1. Complete the finite-element model (FE model) of reinforcement on point 
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support that approximately represents possible cases of support displacement inside 

the slab’s plan. In the simple analytical model a square slab supported in its center is 

loaded with uniform pressure q~ (Fig. 2, a). Determine the positive-moment rein-

forcement area ps
yA

~
 as a tabulated function of load q~: 

)~(
~

qAA ps
y

ps
y =         (2) 

(in the case under consideration owing to symmetry we have ps
y

ps
x AA

~~
= ). 

 2. Complete the nonlinear-elastic FE model of reinforcement on plain support 

with analytical model of previous stage. In the latter FE model the dimensions of 

plain support are equal to cross-sectional dimensions of a given column and FE is of 

a small size and of reinforcement determined on the former stage. Model is intended 

to determine the extreme load q for reinforcement area ps
yyx AAA

~
== , defined for 

any q~ by the table composed on former stage. The model implements the stepwise 

algorithm of construction loading [1, subsect. 3.5], that fixes the load of destruction 

q. After determination of extreme load, it is estimated the crack separation distance in 

marginal state. As a result of stage it is accomplished the tabulated relation of de-

structive loads: 

 )( yAqq = .          (3) 

 3. Match the reinforcement area on the point support for each destructive load 

q obtained at the stage 2: 

)(qAA ps
y

ps
y = .          (4) 

Calculate search coefficient 

ps
y

y
yx

A

A
=α=α .         (5) 

Completing the stage, make transition in the relation )()( qyx α=α  from the argument 

q to argument ps
yA  through the function inverse to function (2); plot the graphic chart 

of function 
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 )( ps
yyy Aα=α .         (6) 

 Remark. Tabulated function (2) gives the rough estimation of destruction load 

qq ≈~  under ps
yyx AAA

~
== . Without such estimation we can’t construct an algorithm 

of seeking the function (3). 

 4. Check usability of the function (6) for reinforcement calculation in special 

cases of slab loading: 

 A) check the accuracy of coefficients yα  calculation under the loading of par-

titioning wall and area load together; 

 B) check the accuracy of coefficients yα  calculation for station of a column on 

a slab verge; 

 C) check the accuracy of coefficients yα  calculation for station of a column on 

a slab corner. 

For each checking A—B we have to compile corresponding model based on nonlin-

ear-elastic reinforced elements.  

The technique described is based on the assumption that coefficient 

)( ps
yyy Aα=α  established by means of developed models for given argument 

ps
yA , is equal to the ratio of required reinforcement area over reinforcement 

area on point support in actual monolithic skeleton (besides, in account of 

square cross-section of a column, similar relationship takes place for the rein-

forcement of x-direction). 

 

3. The example of α-coefficients calculation and numerical results of the paper 

 

Let us consider the floor of width h = 20 cm of civic building and establish co-

efficients α for FE of a size l = 50 cm and for a column of section 50×50 cm. The 

specific of construction is: the greatest span of 6.5 m; walling makes the loading 1250 

kgs/m; the greatest loading of partitions is of 400 kgs/m. We propose class of con-

crete В25, class of reinforcement А-III, the distance from upper and lower longitudi-



6 

Fig. 2 
 

 3 m  3 m 

 3 m 

 3 m 

 0.2 m 

  q~  or  q  

a) 
 

b) 
 

c) 
 

 x 

 y 

Basic 
line 

A 
 

 B 
 

 x 

 y 

nal reinforcement to nearest face of slab a = a′ = 3 cm, the crack separation distance 

and material behavior coefficients is specified in accordance with SNIP 2.03.01-84*, 

the upper limit of stretched longitudinal reinforcement on point support for a given 

skeleton is psAmax = 22 cm2/m; the area of compressed longitudinal reinforcement in 

the support site is )( yxA′  = 2 cm2/m. The analytical model for FE-modeling of the slab 

is the table supported on the column (Fig. 2, a).  

The FE mesh of reinforcement on point support is depicted on Fig. 2, b. Node 

A represents the support on the column and has 6 restraints (translational and angu-

lar). Node B secures invariability of the system and has 1 restraint depicted on the 

scheme. The mesh step is l = 50 cm. That element by which the reinforcement on 

point support has been established is marked with filling. The results of model analy-

sis are presented in columns 1—2 of Table 1.  
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 The sub-image of FE mesh on plain support is depicted on Fig. 2, c; mash step 

l = 6.25 cm. The region of bearing nodes is selected by filling. The basic line has 

been traced through those elements, which the crack separation is estimated by.  

Table 1 
 

q~, 

ton/m2 

ps
yA

~
 = 

= yA ,  

cm2/m 

k k q~, 

ton/m2 
q , 

ton/m2 

ps
yA ,  

cm2/m 
)( yxα  

0.5 5.51 1.2 0.6 0.5314 5.87 0.939 

0.65 7.27 1.2 0.78 0.6386 7.13 1.020 

0.8 9.09 1.1 0.88 0.7242 8.16 1.114 

1 11.63 1 1 0.8445 9.65 1.205 

1.2 14.31 0.9 1.08 0.9677 11.21 1.277 

1.4 17.15 0.9 1.26 1.1550 13.69 1.253 

1.5 18.65 0.9 1.35 1.2723 15.32 1.217 

1.6 20.20 0.9 1.44 1.3954 17.09 1.182 

1.75 22.64 1 1.75 1.5846 19.95 1.135 

2 27.11 1 2 1.9828 26.78 1.012 

 

 For nonlinear-elastic model of stage 2 the elements’ reinforcement are speci-

fied similar in both directions in accordance with column 2 of Table 1. The stress-

strain diagram of concrete is assumed to be the three-piecewise-linear under sustained 

load in correspondence to SP 52-101-2003, i. 5.1. To make any pitch for all pieces of 

the diagram, the parameters σb0, σbt0 were defined by relations σb0 = 0,95Rb, σbt0 = 

0,95Rbt, as it was done, for example, in the paper [2]. The stress-strain diagram of 

steel is assumed to be the two-piecewise-linear in correspondence to SP 52-101-2003, 

i. 5.2, but with the next differences: horizontal portion has been replaced with the 

tilted one defined by ordinates of its ends σs0 = 0,98Rs, σ s2 = 1,02Rs; working resis-

tance Rs is assumed by SNIP 2.03.01-84* (see the relationship σs,SP on Fig. 6).  

To provide speed and accuracy of evaluations, we have to specify the upper 

bound of destruction load limiting the load increase in stepwise algorithm. This 

boundary load is defined by selection of coefficient k and is entered in column 4 for 
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an each reinforcement area. In column 5 there tabulated all real destruction loads, de-

rived by computation.  

When processing the models under consideration by stepwise algorithm of 

LIRA-system, it is executed one-step Newton-Raphson procedure [3, subsec. 7.2], 

where stiffness matrix, as a matter of fact, is Jacobian matrix for nonlinear system of 

resolving equations [4, i. 15.10.1]. Refusal to employ iteration process causes the in-

crease of an error of displacement computation, corresponding to increase of current 

loading, so that result accuracy essentially depends on the loading step value. In the 

given example the analysis has been done for two successive “local” loadings: in the 

first one the 67% of total load kq~ is implemented with 128 steps of similar value; the 

remained 33% is divided by 384 steps of second loading. The decrease of the step 

value up to process termination is necessary to provide an accuracy of computation 

both with the speed of algorithm. Coefficient k was selected such that the process 

terminated not before the middle of runtime of computation of second loading. Such 

implementation of the algorithm has secured an error small enough on computation 

of destruction load (see below).  

By the results of nonlinear analysis it is evaluated the crack separation dis-

tance; to do that we analyze the stress state of the element at the middle of section’s 

side normal to verified reinforcement direction (hatched element on Fig. 2, c). The 

crack separation analysis is made for internal moments xM , yM , xyM , established in 

the element. The system LIRA 9.x allows to do this analysis automatically — we rec-

ommend to specify internal moments and element characteristics in the design sub-

system LIR-LARM, then start the computing in the mode of determination of rein-

forcement. Both with the crack separation distance it will be determined the rein-

forcement area for given forces, and the affinity of calculated reinforcement area to 

initial value from the column 2 of Table 1 may be considered as the confirmation of 

computing accuracy. For the example presented above such affinity is secured. 

In the columns 6 and 7 of Table 1 it is given values (4) and (5) obtained at the 

stage 3. These columns specify the searched function (6). Its plot is presented on Fig. 

3, curve 1. 
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The error estimation of computation 

is obtained for loads from column 4 of Ta-

ble 1: for each load it was constructed a se-

quence of values of destruction load, so that 

each next load has been obtained through 

doubling of steps in local loadings. The re-

sults of estimation of convergence speed are 

presented into Table 2, where for each pair 

of neighbouring members of named se-

quence it is given the relative deviation 

i

ii
i q

qq 1
1

−
−

−
=δ . 

 Let us estimate the destruction load q4 (for step ratio 128/384). By reason of 

that the last member in every constructed consequence is neglectable, one can assume 

the last in raw value of destruction load q5 (or q6 for ninth line of the table) to be ac-

curate result. So we have a sample of computing errors of load q4: 

∑
≥

Σ δ=δ
4i

i .      (7) 

Table 2 
 

Number q = qi (ton/m2) for specified ratio of steps in local loadings, error δi% 
yA ,  

cm2/ 
m 

k q~, 

ton/
m2 

16/ 
48 

32/ 
96 

δ1

% 
64/ 
192 

δ2% 128/ 
384 

δ3

% 
256/ 
768 

δ4% 512/  
1536 

δ5% 

δΣ% 
 
 
 

5.51 0.6 0.5258 0.5216 -0.8 0.5227 0.2 0.5314 1.6 0.5312 -0.04   -0.04 

7.27 0.78 0.6513 0.6433 -1.2 0.6392 -0.6 0.6386 -0.1 0.6376 -0.16   -0.16 

9.09 0.88 0.759 0.7409 -2.4 0.7318 -1.2 0.7242 -1.0 0.7231 -0.15   -0.15 

11.63 1 0.89 0.8591 -3.6 0.8488 -1.2 0.8445 -0.5 0.8423 -0.26   -0.26 

14.31 1.08 1.0058 0.9872 -1.9 0.9723 -1.5 0.9677 -0.5 0.9658 -0.20   -0.20 

17.15 1.26 1.1387 1.1431 0.4 1.1409 -0.2 1.1550 1.2 1.1555 0.04   0.04 

18.65 1.35 1.2108 1.2386 2.2 1.2525 1.1 1.2723 1.6 1.2763 0.03   0.03 

20.20 1.44 1.3311 1.3559 1.8 1.3806 1.8 1.3954 1.1 1.3967 0.09   0.09 

22.64 1.75 1.5094 1.5334 1.6 1.5665 2.1 1.5846 1.1 1.6177 2.0 1.621 0.20 2.2 

27.11 2 1.8762 1.89 0.7 1.9484 3.0 1.9828 1.7 1.9863 0.02   0.02 

 

Fig. 3 
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The error upper bound of destruction load may be determined with the rule of “3 

sigma” by sample average m and sample MSD s of the sum (7) taken by 10 presented 

experiments. We have δmax = m  + 3s = 2.34%. To find out the calculation relative 

error of reinforcement area ps
yA , we note that function (4) is close to linear one, and 

its diagram may be plotted by the data from the two first columns of Table 1. We eas-

ily obtain through consideration of the relation of finite augments ps
yA∆  and ∆q, that 

in the expression 

q

q

A

A

y

y ∆ψ=
∆

то

то

 

the greatest value of coefficient ψ is reached at the greatest value psAmax = 22 cm2/m 

and is equal to ψ = 1.2. Therefore, the relative error δmax = 2.34% of a value’s q cal-

culation causes the greatest error 1.2 ⋅ 2.34 ≈ 2.8% of evaluated ps
yA  and, respec-

tively, of coefficient )( yxα . This error is sufficiently small to neglect. 

 Analogous error estimation for destruction load q3 (with step ratio 64/192) 

gives the greatest error δmax = 5.06%. Corresponding calculation’s error of a value 

)( yxα  is 6.1%. Coefficients )( yxα , that tabulated into Table S.1 at the paper’s supple-

ment, have been calculated with step ratio 128/386, the remained results of supple-

ment have been obtained with ratio 64/192. 

 For calculation the crack separation it was chosen the element at the middle of 

an edge of a column cross-section. Note that choosing the element adjacent to the col-

umn is not important here by dint of smoothing the internal forces, caused by nonlin-

ear materials properties. On Fig. 4 it is depicted sub-image from the scheme 2, c, with 

basic line and diagrams on this one. On the left to the symmetry axis it is plotted the 

bending moment diagram for armored slab under the load q = 0.9677 ton/m2 (the fifth 

raw of Table 1). It may be seen that moments along the side of section are of not es-

sential difference. For comparison it is depicted on the right the similar diagram ob-

tained through linear calculations for non-armored elements. It may be seen that lin-

ear-elastic analysis completes inadequate result. In regards to this, the attempt of 
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making reinforcement near supports more precise by condensing FE mesh, might 

raise error up, for capacity of smoothing the internal forces is lost, while the FEs of 

big size have this one.  

 Of the fourth stage’s checks we’ll consider most labor-intensive check B, 

which made through analytical model on Fig. 5 (on the left) and respective FE mesh 

with point support (on the right). The load q simulates all actual loads on the floor 

except the load by walling; the load P makes precise the effect of the load q at the 

spans parallel to slab edge; the load q1 simulates pressure of walling. In the element 

adjacent to the point support we can find out 3 internal moments: wall
yM  — bending 

moment of the walling impact in the cross-section that normal to the edge; square
yM  

and square
xM  — bending moments of all remained loadings in specified directions. For 

the simulated floors of the skeleton under consideration it is evaluated the ranges for 

every load q, P, q1, producing this forces in the testing model. Besides of the model-

Fig. 4 
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on-the-point-support for described analytical model, we construct nonlinear-elastic 

model with FE mesh step l = 6.25 cm. This model is used, having loads and rein-

forcement, to obtain the factor of safety of the structure ksafe, i. e. the coefficient 

which defines marginal state under loads (ksafeq, ksafeP, ksafeq1). By means of this 

model for any given value ps
yA  we define the least factor ksafe of the structure, rein-

forced with allowance for recalculation coefficients (1), under any loads correspond-

ing to accepted reinforcement on the point support, i. e. loads satisfying to the equa-

tion 

ps
y

ps
y AqPqA =),,( 1 . 

Next, by the diagram of the relation ksafe(
ps
yA ) we make a conclusion about passing a 

check. In considered example the guaranteed factor of safety is no less then 1, that is 

why recalculation coefficients, defined by the relation 1 on Fig. 3, satisfies to the 

check B. The checks A and C are completed in similar manner. 

 On Fig. 3 the curve 2 is plotted for negative-moment reinforcement area    

)( yxA′  = 6 cm2/m with step ratio 128/284. By comparison of curves 1 and 2 we note 

that parameter’s yA′  deviation does not disturb essentially the relation (6).  

 In the case of rectangular cross-section column B×H the technique described 

above should be generalized by the next complement. The searched relations 

)( ps
yy Aα  and )( ps

xx Aα   do not coincide now, and, for beginning, we have to establish 

their approximations: the relation )( ps
yy Aα  is wanted of being established as for a 

column B×B; the relation )( ps
xx Aα  is wanted as for a column H×H. After that these 

relations have to be corrected by the next scheme. In the considered above model of 

stage 2 we introduce rectangular support of the cross-section B×H and specify rein-

forcement by use of obtained recalculation coefficients yα  and xα  for different loads 

q. Then we plot the relation ksafe(q) “factor of safety — load” for table-like construc-

tion (computing continues until destruction). For typical skeleton these coefficients 

do not differ significantly from the unit: for instance, it was obtained the value ksafe ≥ 
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0.96 for a column 0.5×0.75 m and h = 20 cm (see supplement). Having established 

the relation ksafe(q) and taking into account the plotted distraction pattern we adjust 

relations )( ps
yy Aα , )( ps

xx Aα  by multiplying factors the such that provide condition 

ksafe ≥ 1 on the next recalculation (formulas (S.1) are the examples of adjustment). 

This computing technology is based on the hypothesis that along each side of upper 

cross-section of a column, supporting the slab, the SSS of the letter is defined just by 

the dimension of this side, and is of not valuable dependence on the section’s dimen-

sion by another direction. Considering the checks A—C of the stage 4 (see above) we 

note that these checks’ technique is applicable to columns of rectangular section with 

no changes. In the supplement we tabulate results of coefficients α calculation for 

different cross-sections of column.  

 

4. About exceeding of reinforcement area by analysis  

with nonlinear-elastic model 

 

 When being calculated reinforcement area by means of nonlinear-elastic mod-

el, the virtual distraction could be found out for a reinforcement which provides in-

tegrity of the structure in practice. This occurs by the next two reasons. 

 1. The stepwise calculator of the system LIRA 9.x when applied to the armored 

slabs, detects distraction on the loss of links to supporting nodes that makes a struc-

ture geometrically variable. The loss of link to the support is detected on the state of 

plastic hinge for any element between the support and the safe part of a structure. The 

state of structure called plastic hinge in system LIRA may be close to the marginal 

but not being this. Thus, for instance, plastic hinge arises if the stress in tensile rein-

forcement becomes greater +σs8.0 , where +σs  is the greatest stress on the stress-strain 

diagram of reinforcement tension, and therewith extent of a region of stretched con-

crete is small enough. That is why it might be detected false destruction on comput-

ing analysis.  

 2. In accordance with SP 52-101-2003, the limpness stress (greatest safety 

stress) on the armature state diagrams is being conservative because this stress is as-
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sumed to be the yield stress (designed stress), whereas distraction is defined by ulti-

mate strength. On Fig. 6 it is depicted 3 diagrams of tension of reinforcement A-III: 

σs,SP(ε) — diagram by SP 52-101-2003; σs,ex(ε) — experimental diagram from the 

book [5], the such that the yield stress σy and ultimate stress σu  correspond to GOST 

5781-82; σs,test(ε) — piecewise-linear diagram, inclosing hardening segment. The lat-

ter diagram has been used in repeated analysis with nonlinear-elastic models, that 

aiming to obtain lower reinforcement area providing structure strength, yet violating 

the requirements of SP 52-101-2003. This testing diagram is obtained by extrapola-

tion of diagram σs,SP in such manner, that from point εs1 the ratio σs,ex(ε)/σs,test(ε) 

would increase from 1.07 (i. e. from reinforcement reliability coefficient by SNIP 

2.03.01-84*) up to 4/3 with ultimate strain 6%. This ultimate strain is of lesser value 

then relative stretch δ5 = 14% by GOST 5781-82 (1994). Owing to the listed peculi-

arities of testing diagram the results of analysis using the latter are being sufficiently 

reliable.  

 Being calculated SSS by means of nonlinear-elastic model elaborated for the 

problem considered in Sect. 3, one confirms integrity of the structure with unit coef-

ficients αx(y). This result accounts for the integrity of reinforced monolithic structures 

designed with no holding of required FE mesh step — namely, because of possible 

analysis errors the real state of reinforcement might change to tensile hardening zone 
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(behind the yield point), when the crack separation being out of limit but there is no 

destruction of structure.  

 Remark. Diagram of compression of structural steel is in close agreement with 

diagram of tension on strain range up to hardening, and for greater strains (by mod-

ule) the compression stress is greater then tension stress [6]; in consequence of this 

we assume the diagram of reinforcement state being symmetrical.  

  

Results.  

 On analysis of monolithic slab reinforcement by means of FE model with point 

supports, we have to take into account the relation between obtained results and FE 

mesh step. 

 The amendment of reinforcement area in the vicinity of point supports is at-

tained with recalculation coefficients for reinforcement area, which depend on FE 

mesh step and may be tabulated. 

 Analysis by SP 52-101-2003 does not take into account additional strength of 

structure, corresponding to working state of reinforcement at the hardening zone of 

diagram of state. 
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SUPPLEMENT 

 

RELATIONS )( ps
yyy Aα=α , )( ps

xxx Aα=α   

CORRESPONDING TO FE MESH OF CELL l = 50 cm 
 

In all tabulated relations below, for the intermediate argument’s value the 

function has to be established by linear interpolation.  

The analysis conditions are defined at the first paragraph of sect. 3 except by 

the next: )( yxA′  = 4 cm2/m; the column cross-section dimensions are given below. 

Table S.1 
Column section B×H = 0.5×0.5 m  

Variable Variables’ values for dimensionality  

][ ps
yA  = cm2/m 

ps
yA  5 6.5 10 12.5 25 

yα  0.9 1 1.23 1.29 1.15 

 

Table S.2 
Column section B×H = 0.75×0.75 m  

Variable Variables’ values for dimensionality  

][ ps
yA  = cm2/m 

ps
yA  5 12 16.5 19 25 

yα  0.8 0.96 1.02 1.01 0.96 

 Column section B×H = 0.5×0.75 m: the relations searched are obtained by means of tables 

S.1 and S.2 after correction as follows: 

)(02.1 5.05.075.05.0 ps
yyy A×× α=α ; )(05.1 75.075.075.05.0 ps

xyx A×× α=α .           (S.1) 

— Coefficients are calculated for the column location inside the floor grid. 
 

Table S.3 
Column section B×H = 0.375×0.375 m  

Variable Variables’ values for dimensionality  

][ ps
yA  = cm2/m 

ps
yA  5.5 8.5 11 14 17.5 22.5 

yα  1.00 1.26 1.31 1.32 1.26 1.20 

 


